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ABSTRACT

An expression has been developed for the longi-

tudinal component of the vibratory force exerted on a prolate

spheroid by the operation of a marine propeller in a space-
varying field (wake). Two evaluation schemes have been con-
sidered: one by integration of the pressure signal over the
surface of the ellipsoid and the other by means of Lagally's

theorem with the ellipsoid represented by a known source-sink

distribution. Numerical calculations indicate the important

role played by propeller clearance and slenderness ratio in

the magnitude of the vibratory force.I
I
I
I
I
I
5
I
I
U

R-855
I -iii

t~



I
I

TABLE OF CONTENTS

Abstract iii
I.

Introduction

Quasi-Steady and Unsteady Vibratory Force on a ]
Prolate Spheroid 2

Vibratory Force 2

Pressure Field 6

Conclusion 17

Acknowledgment 18

References 18

R-855-iv-

II



I MEMO-

INTRODUCTION

During the past few years, theoretical investiga-

I tions have been undertaken at Davidson Laboratory of

Stevens Institute of Technology into the vibratory pressure

and velocity field around an operating marine propeller with

the object of determining the forces exerted on nearby

bodies. Early studies" 2 were restricted to the case of uni-

form inflow to the propeller which is represented by a line-

vortex array to give the effect of loading and by a source-

sink distribution for the blade thickness effect. Later

studies of the propeller field treated nonuniform inflow con-

ditions since in the case of a marine propeller located be-

hind a hull, nonuniformity of the inflow field is a common

occurrence. In these studies 3 ' 4 which were concerned with

both acoustic and hydrodynamic media, the propeller was rep-

resented by axial and tangential doublet distributions on the

propeller blade axis with strength depending on radial and

angular position. In considering propeller operation under

3 nonuniform inflow conditions (wake), the analysis takes cog-

nizance of a situation more realistic than the open water

3 condition, since the effect of the boundary Is taken implicit-

ly into account through the wake formation. In other investi-

gations, initiated by Davidson Laboratory toward fulfillment

of the long-range objective of the series, expressions have
been developed for the vibratory forces and moments produced

by a marine propeller on a doubly-infinite rigid plate5 and

an infinitely long rigid strip.8 Results of the latter study

I are surprisingly simple and indicate that a vibratory force

of considerable magnitude could be obtained from the transient

3 field generated by an operating propeller.

The present study endeavors to determine the vibra-

3 tory forces exerted on an ellipsoid of revolution by a marine

I
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propeller operating in a specified wake behind a prolate

spheroid.

The study has been carried out under Bureau of Ships

Fundamental Hydrodynamics Research Program S-R009 01 01,

Contract Nonr 263(16) and administered by David Taylor Model

Basin.

QUASI-STEADY AND UNSTEADY VIBRATORY
FORCE ON A PROLATE SPHEROID

Vibratory Force

The propeller disc is located at a distance f from

the center of the spheroid whose major axis coincides with

the longitudinal axis of the propeller (see sketch). The

prolate spheroid is defined in terms of its major axis 2a and

its eccentricity e. Two car-

tesian coordinate systems are

used with the same direction
y of positive axes but with duf-

x, ferent origin. The axes

located at the propeller center

are designated by x, y, z and

the axes with origin at the

center of the ellipsoid of H
Sketch No. I revolution by x0, Yo., Zo 0 .

The relation between the cartesian coordinates 11
Xo' yo, zo and ellipsoidal coordinates p, u, ' are given by

x0  kpC 1< •<

Yo = k1 ) cos 4P -1<:l _1

Z0 = k(l-/u) (A2W-) sin * 0•/'27r

LI
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For a given ellipsoid of known eccentricity e and major

I semi-axis, a,

1to (1)a, =X

S/1 /2

The radial distance ro = (xo + -) / _e2)

and the x 0 -cosine direction of the unit vector tangent to

I the surface ( constant is given by

COS a ( 2  2 (2)

The propeller located behind a ship operates in space-varying

inflow conditions so that its rotating blades experience a
time-dependent gust. On the basis of this physical reason-

ing an approximate theory has been developed 7 utilizing

two-dimensional unsteady theory in a stripwise fashion. It
I Is true, on the other hand, that the pressure of the pro-

peller disturbs the fluid field around the body so that the

stream lines adjacent to the body are distorted. This amounts
to distortion of the original shape of the body. The effect

on the boundary of the presence of the propeller, the so-

l called "image effect" necessary to restore the boundary, was

rigorously evaluated in the case of the doubly-infinite rigid

plate 5 and later for an infinitely long rigid cylinder. 8 ' 9

In the latter studies it was found independently that theI vibratory force exerted on the cylinder due to the "imvee
effect" is identically the sre as that developed directly

by the propeller action. To the best of the authors' know-

ledge, there is not at present a method of constructing the

"image potential" for the case of an ellipsoid of revolution3 in the presence of the propeller. This case is complicated

further by the fact that the propeller potential is more con-
I veniently expressed in cylindrical coordinates whereas the

I
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fluid potential around the ellipsoid of revolution is ex-

pressed in terms of ellipsoidal coordinates. This study,

therefore, while taking cognizance of the effect of the

boundary on the propeller, ignores the "image effect." It is

believed that for bodies of practical interest--that is, very

slender bodies--the effect of the so-called "image system"

will be secondary. The axial velocity induced by the action

of the propeller is much smaller than the forward velocity

of the body, so that the effect of the distortion in the

axial direction will be small.

There are two possible schemes for evaluating the

axial vibratory force exerted on the prolate spheroid: 1) by

integrating the transient pressure over the surface of the

body; 2) by means of Lagally's theorem since the spheroid can
be represented by a line source-sink distribution of known !

strength. It is to be noted that for a propeller located on
the body axis, only the fore-and-aft force is present; the

transverse force in any direction will be nil due to the

symmetry.

According to scheme 1, the axial force AFx exerted

on a ring of radius ro located at xo, will be given by

dxo

AFx =-P sin a r° dO cosa--

where P is the pressure distribution arising from the opera-

ting propeller. The resultant axial force exerted on the

ellipsoid will be given therefore by
f+a .2ir'

Fx = f j Pr 0 tan a de dxf-a 0

or

Fx= a(l-e2)Jf P(ro,•) 0 dO dý (3)
-l0
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by utilizing eq. 2. In this form the expression for the

pressure arising from the propeller is written in terms of

the nondimensional coordinate ý of the prolate spheroid. The

pressure field emanating from the operating propeller is made

up of a superposition of axially and tangentially directed

3 doublets. The latter doublet distribution is in a plane

normal to the x-axis and will not contribute to the axial

component of the vibratory force, whereas the first one,

which is designated as the thrust producing pressure, PT'

will be the only contributor in eq. 3.

I In the second scheme the ellipsoid of revolution is

represented by a line segment distribution of sources and

sinks between the focal points, of strength1 ° given by

U

where U = forward velocity of the hull

E 2 e 2 Lnl+e (4)I =l-e --e

Then the interaction force between the propeller and the ele-

ment of the singularity representing the ellipsoid will be

S1 given by application of Lagally's theory as

S= -47rp(f-x) U dxZ x I r=O (5)
I where

I ux = axial component of the velocity induced by the pro-

peller at any point on the axis of the ellipsoid.

I It is known, however, that the instantaneous linear-

ized pressure in the field of an operating propeller is givenI by

S Tx (6)

I [
SR-855
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where n = propeller angular velocity and p - fluid density and

0 the velocity potential. The first term is the torque-

associated pressure signal; the second is the pressure com-

ponent associated with propeller thrust. The torque-associated

pressure acting in a plane normal to the x-axis will not con-

tribute to the x-component of the force as it integrates to

zero on any circle with center on the propeller axis. In

addition, its value on the x-axis is identically zero, since

r = O.3 Hence eq. 6 is reduced to

P T

which upon substitution into eq. 5 and integration leads to

F = ff+k _d 7
x ý (x-f) PTro dx (7)

ff-k

where k = ae which defines the locus of the focal points. The

axial component of the vibratory force exerted on the prolate

spheroid by the propeller action is determined either by eq. 3
or eq. 7, respectively, once the pressure on the hull or on

its axis is determined.

Pressure Field

The pressure field emanating from a marine propeller

operating under space-varying inflow conditions has been the

subject of ref. 3 and 4. The flow about propeller blades

rotating through the space-varying ship wake is equivalent to

that of a wing moving through a sinusoidal gust. Although the

problem is of very pronounced three-dimensional character

(low aspect ratio of the blades, three-dimensional gust), the

two-dimensional unsteady aerodynamic theory has been utilized

in a stripwise fashion as the best expedient in the present

state of the art. It is assumed that a two-dimensional flow

condition exists at every blade section and that three-

R-855
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dimensional effects can be taken into account by Burrill'la

I method which applies correction factors to the axial and

tangential components of the inflow velocity relative to the

I propeller.

At any radial section of the blade the velocity

components and the resultant velocity are shown in sketch

No. 2 below:

ZERO LIFTI LINE

4 si• * 
'(*

3 Dr

I where V = propeller forward velocity

S= angular propeller velocity

I a, a, = axial and tangential correction factors,
respectively1 1

I U, U' = resultant fluid velocity with respect to the
propeller in the absence and presence of the
wake, respectively

I ~WL, WT = longitudinal and tangential wake velocity,
respectively

a* = angle of attack

3 = effective angle of attack

S= hydrodynamnic pitch angle
I Do = effective pitch angle

Ii
' R-8551 -7-

~~h r V,, = prp l e fow r ve o iitii iiiy I...i .



t

If the instantaneous velocity U is resolved aloag and normal
to the chords then the corresponding surge and cross veloci-
ties are given as

Vs M U cos a - Ws

Vc = U sin a + We

where

ws = [WT + a? (D~r-WT)] cos 710 + [WL-a(V-WL)]I sin T

we = [wL - a (V-WL)] COS 0 - [WT + at (f2r-WT)] sin77

For small angles, the following four combinations
of surge and cross velocities will simulate the flow around
the propeller and give rise to corresponding components of
lift produced by a propeller operating in a wake:

Surge Velocity Cross-flow Velocity Lift

1 U U* (i)

2 U We L(2)
(8)

S3 u(3)

4 -w We L(4)

The lift at the corresponding sections is determined byutilizing the results of unsteady aerodynamic theory in terms

of the harmonic constituents of the wake flow. The elementary D
thrust and torque developed by a propeller section at a radial
distance r, will be given by

dT _ ip a C U' 2 cos X

(9)
•=7rr= 2pCLU sin X

R-855-8- F



I
where

w CL = lift coefficient per blade section

B = number of blades

a = bB = solidity

b = chord length at each propeller section

1 On the assumption of constant blade-loading distribution
along the chord the strength of the pressure doublet related
to the thrust and torque will be given by

Bn inB?(t-01B~rl nBb •-r)dT

I FT(ra'ei't)= B n-B' sin ne 2 ard

n= -•
n/O (10)

FQ(r,.e't)= i r sin n eb 2er1 M 1 dQ
n=-o

The strengths of pressure doublets are finally expressed by

means of eqs.9 and 10 in terms of the lift coefficients
associated with four flow conditions indicated by eq. 8. Then
the pressure signals associated with the thrust and torque
loading are given by the well known expressions

R 27r

T Rr FT(r ,e 1,t) - , drd

JJ R 7 F,(rlOlt) dr1 de1

R8
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where rle 1 = polar coordinates of the doublet singularity on
the propeller plane

x,r,e = cylindrical coordinates of the field point or

point of observation

R = propeller radius

S = Descartes' distance between the singularity and
field point =fx 2+r 2 +r 2 - 2rr c0s(e1 -e)I 1/2

In ref. 3 the pressure signals emanating from the

propeller and associated with the thrust and torque loading

are determined by means of eq. 11 in conjunction with

eqs. 8, 9, 10. The thrust loading pressure which is of in-

terest in the present work is given by (see eq. 20 for the

case k = 0 in the above reference)

7einBtBR C(ri) a B',n+ FB3, + '

0 =1

2 f(BI'on+n -B',n-n)] -ix[a B1" + (12)-r 3,n
n1=l

B" = si B" B"osnB

B3n, n+nr " Bsn/ nl(Bin+n)-B(,n-n1)n-n id ] dr ,

where

B' rcos n2Be / cos nBb dý
In (x2++r -' O (b k rcoS

27r

B" sin nB9 cos nBe d
v,n =ý ( r +,V/2 f (1-k JCOSJ)1/2 d• (13)

0

2r I rnBb
k=2r22 ~r 2r in nBb e- r~l
k x x+r +rl ;~ C2r,=•si

R-855
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I

an, b the cosine and sine Fourier coefficients of the load-

ing function (eq. 9) expressed in terms of the harmonic con-
stituents of the wake velocity. Equation 13 can be written
in more convenient form as

xB~a, = x cos nBef cos nB de,
""fo C(x2+r2 +r2 -2rrcoj]'/1I0

27r IM0
-M--cos rBe cos nBCos M fJm(ktr)Jm(kwrj)eI Ik' dkt dt

0 ok'6O

where use is made of the well known Fourier expansion of the
inverse of the Descartes? distance 1/S, i.e.:

WZdo 0o *Ixlkld'Em cos mOf Jm(ktr)Jm(ktri).e x dk'

C _kt=O

I where cm = 1 m ='O

1 Cm = 2 for m O 0

Interchanging the order of summation and integration (which

is permissible in this case as shown in Appendix 2 of ref. 6)

leads to - x .

3 xB',n = -27r cos nB x JnB(k'r)JnB(k'r e ' dk'
T0

3 Similarly 0 k,

XB;,n = -27rsin nBe r-. jnB(kIr)JnB(kr( e I e dk'
0fI

Therefore eq. 12 is seen to be made up of terms of the form

-7ra o sin co n] Jni(kr)JnB(k'rL)e- tIk'dk,

v (eq. 14 con't on next pg)

R-855
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6anz Isn)cos(n±nr))B9 a J(n±n,)Be(k'r)J(n±n1 )Be(k'rl) eIXI k'dkI
scn(n(n,)Be T o"

"7rb nxeos(n nxn)BO9 _I J(n±n)BO(k'r)J(n±n )Be(k'rl)e-IXIk'dk'

where ni extends from one to infinity. (14)

However, the indicated e-integration in eq. 3 fixes

the order of harmonics which will contribute to the blade-

frequency vibratory force. In fact, the only terms which re-

main after the e-integrations are those for n-n 1 =O or n1 =n

since n/O and n+n/O, both being greater than zero.

Therefore,out of an infinite number of possible com-

binations of the harmonics of the space function with those

of the loading function, only the zero order harmonic of the

space function with the blade frequency part of the loading

contributes to the vibratory force. Hence the blade-frequency

yibratory force referred to a coordinate system fixed at the

center of the spheroid will be given by

BeZ~
e a(l-e2 ) C(r4) (an(r)-ibn(rd)

•-f J(k'r )J(k'ro)e-alf'+fIk' dk' dr de jj
k=O

where r = a( l-e 2 ) 1/2 (lI-2) 1/2

f' = f/a U
The • - integration by parts leads to

einBft 2) R
Fx= B a(l-e C(rl) [an(rl)-ibn( r,)] [I-1 2 ]

0
(15)

R-855
-12- 1



where

I -= [(f'+a)2 + r. 1/2 + [(f'-a)2 + r'] 1/2

2I = f J 0 (k'rj) J 0 (k'rde-a(f'+ )k'dk, d
-1 0

or f K(a) 0
12 7rf a2(ft+t)2 + X(1_e~2)1/2 + r 2 1-72

Ia or

I2= 7 f.- 1 / (Z) dý
-i

I where K(a) = complete elliptic integral of the first kind of
modulus

a 2(f'+e)2 + [X(l-e 2 )'/ 2 +rir 1 1/2

X a(1-e 2)1/2
order ~Q Legendre's function of the second kind of -1/2

order

z a a2(f'+ý)2 + >2(1_e2) + r
2rX (i-l2)e)/2

3 In eq. 15 11 denotes the bow and stern contribution to the
vibratory force and 12 gives the contribution of the rest of3 the surface. The second term of I gives the stern contribu-

tion, which is the predominant contribution, whereas the first3 term is associated with the bow contribution.

In the second scheme where the pressure PT has to
I be evaluated at r = 0, eq. 14 indicates that PT / 0 If and

only if n = 0 or n ± n1 = 0. The case n = 0 is of no interest
to us since the blade-frequency force must be evaluated. The

case n + nj = 0 is impossible since n and ni vary from 1 to
infinity. Therefore the only possibility is n - n1  0 or

R-855
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n- n which reduces eq. 12 to the form
PT = B - n,-jOR C(rj) an(r,)-ibn(rj) 6 Jo(ktrl)e-lXlk'dkf

"0 (16)

After substitution of eq. 16 into eq. 7 the longitudinal com-
ponent of the vibratory force is determined as

f+ae

FX= - ein-of f C(rj) { an(rj)-ibn(rj) (f-x)
x=f-ae 0W i

6 j (k'r1 ) e-xjk dk' dr, dx

which after the k and x integrations leads to
inse2tR_________ __

Fx=Be E f ari)-bnri){ ae ae
0 r) ) (f+ae) +rI + (f-ae) 2 +r•

+ f-ae + #(f-ae )2 + (17)+ log drI (17)
lf+ae + ( ae +r

Comparison of eq. 15 and 17 shows that both are of the same
structure and, in fact, the first two terms of eq. 17 can be

shown to be identical with the first two terms of eq. 15 for
ae a(l-e2 )a slender body, with e--i and -- . The logarithmic

term is equivalent to the 12 term, which is small and repre-
sents the contribution of the line singularity distribution
extended between the focal points.

For both expressions, however, the remaining radial
integration must be performed either numerically, since
numerical values of the loading function an(rl)are known in
terms of the measured wake velocity, or by utilizing the
mean-value theorem of the calculus.

R-855

-14-



I

The second scheme, however, can be further simpli-

fied by assuming that the chordwise and loading functions are

evaluated at a suitable radial distance (R e) and then con-

I secutive integrations with respect to x and r1 lead to the

following form

e inBqt
Fx -B-- C(Re) I an(Re)-ibn(Re)

I2
Rf log R(f+ae) + (f+ae) (f-ae) 2 + R2

1R(f-ae) + (f-ae)J(f+ae) 2 + R2

+R2 1og f-ae + (f-ae) 2 + R2  (18)I Lf+ae +,](f+ae) 2 + R2

The method of evaluating the Fourier coefficients

an(rL)and bn(ri) has been indicated sketchily but the necessary

information is presented in detail in refs. 3 and 4. With the

experience gained from previous calculation, it is suggested

that the quasi-steady approach for the loading function be
utilized. Making use of the two-dimensional unsteady theory

in a stripwise fashion has led to a great discrepancy between

the measured and calculated vibratory thrust, whereas the

quasi-steady results are close to the experimental. This dis-

crepancy has led to a series of investigations at Davidson

3 Laboratory which apply lifting-surface theory approach to the

marine propeller case.

3 In the quasi-steady flow case, then, the lift per

unit of blade radius at each radial distance can be written4

3 as
L = 2rpc Kgs Ks (U2a *+ Y Wc - Ua W - WsWc) (19)

I where

c - semi-chord at that radius

SK gs,Ks = correction factors for cascade and finite
aspect ratio effects"1

I
i ~R-855i
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The remainder of the symbols are as defined previously.

It is suggested that eqs. 18 and 19 be used in the

evaluation of the longitudinal component of the vibratory

force. Numerical calculations have been obtained by means of

eq. 18 to determine the dependence of the longitudinal vibra-

tory force on propeller clearance, as well as on the slender-

ness ratio of the ellipsoid of revolution, for the same load-

ing conditions and a given propeller radius.

In the limiting case e-l, when the ellipsoid de-

generates to a segment of the x-axis of length 2ae about the

origin, it is easily seen that lim Fx = 0. When, however,
e-1

eoO and the ellipsoid degenerates to a sphere of radius a,
the vibratory force Fx is obtained by three successive appli-

cations of L'Hospital's rule as

Fx = Be inBt C(Re) an(R )-ibn(Re) (2 )/2 (1 + 2f
ae nR2 e 7-- f

a3R2 R2
The space factor, f2+R2 ),/2 (1 +

compares with f2R2 of ref. 10 where the propeller action
(f2+R2)3/2

is represented by a sink disk. The additional term R2 /2f 2 is

very small in all cases of practical interest, so that the

sink disk representation of the propeller action is a good

approximation as far as the longitudinal force is concerned.

It is interesting to notice, however, that the difference

between eq. 20 and that of ref. 10 lies in the form of the

loading distribution. The sink representation for the pro-

peller action can be proved exact. In the case treated
previously,' 0 the entire disk is activated, while in the
present case only segments of the disk participate in simulating

propeller action. This fact is the actual reason for the ob-

served differences. Thus eq. 20 should be considered more

R-855
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accurate. In the marine propeller case with very wide blades

the difference between disk activator and activating sectors

should be small.

Calculations indicate the importance of the pro-

peller clearance and the slenderness ratio of the body and,

of course, the shape of the afterbody, since the slope of the

cross-sectional area curve depends on the slenderness of the

3 body.

In changing the propeller clearance from zero to

S1/4 of propeller diameter (C = .04a), the vibratory force is

reduced by about 50% for slenderness ratio 0.1 to 0.2, which

is a region of practical interest. Figure 1 is a chart of
the space function (of eqs. 18 and 20) versus slenderness

ratio =i - e4 2 for R = 0.08a.

CONCLUSION

In the foregoing analysis an expression for the

longitudinal component of the vibratory force exerted on an

ellipsoid of revolution by the propeller action has been

developed in closed form in terms of elementary functions, and

the relative importance of the various parameters has been

revealed. It is indicated that the vibratory force s-rongly

depends on the axial propeller clearance as well as on the

slenderness of the ellipsoid of revolution and therefore on

the slope of the cross-sectional area at the afterbody section.

In fact, in the region of practical interest, for slenderness

ratio of 0.1 to 0.2, changing the propeller clearance from
zero to 1/4 propeller diameter reduces the longitudinal vibra-

tory force to approximately half. In this range, also, the

force decreases rapidly with increasing fineness.

I
!
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